Ciencias
Ver día anteriorViernes 12 de febrero de 2016Ver día siguienteEdiciones anteriores
Servicio Sindicado RSS
Dixio
 

Investigadores anunciaron ayer la primera detección directa de ondas gravitacionales

Comprueban una predicción de la teoría de la relatividad de Einstein

Astrofísicos comparan el suceso con la ocasión en que Galileo apuntó el telescopio al cielo

La posibilidad de una colisión entre dos agujeros negros fue predicha por el científico alemán, pero el fenómeno jamás había sido observado

El hallazgo está publicado en Physical Review Letters

Foto
En la imagen, una vista de las ondas gravitacionales de dos agujeros negros convergentes proyectada en una pantalla detrás de Kip Thorne, cofundador del observatorio LigoFoto Ap
 
Periódico La Jornada
Viernes 12 de febrero de 2016, p. 2

Washington.

Equipos internacionales de investigadores anunciaron ayer la primera detección directa de ondas gravitacionales, avance mayúsculo para la física que abre una nueva ventana al universo y sus misterios.

Este paso adelante marca el nacimiento de un dominio enteramente nuevo de la astrofísica, comparable al momento en que Galileo apuntó por primera vez su telescopio hacia el cielo en el siglo XVII, dijo France Cordova, directora de la Fundación Nacional Estadunidense de Ciencias, que financia el laboratorio Ligo.

El descubrimiento, que corona esfuerzos de décadas, confirma una predicción efectuada por Albert Einstein en su teoría general de la relatividad de 1915.

Estas ondas gravitacionales fueron detectadas en Estados Unidos el pasado 14 de septiembre por los instrumentos del observatorio Ligo (Laser Interferometer Gravitational-wave Observatory), que miden cada uno cuatro kilómetros.

Este descubrimiento fue realizado en colaboración con equipos científicos europeos, especialmente los investigadores del Centro Nacional de Investigación Científica (CNRS) francés, del equipo Virgo.

Esta nueva mirada sobre la inmensidad celeste permitirá profundizar nuestra comprensión del cosmos y conducir a descubrimientos inesperados, dijo Cordova.

Las ondas gravitacionales son producidas por perturbaciones en la trama del espacio-tiempo por los efectos del desplazamiento de un objeto de enorme masa. Estas perturbaciones se desplazan a la velocidad de la luz en la forma de ondas y nada las detiene.

Este fenómeno, adelantado por Einstein hace un siglo, suele ser representado como la deformación que ocurre cuando un peso reposa sobre una red. En este caso, la red representa el entramado espacio-tiempo.

El físico Benoît Mours, del CNRS, consideró que el descubrimiento era histórico porque permite verificar de forma directa una de las predicciones de la teoría general de la relatividad.

Agujeros negros

Por este descubrimiento, los físicos han determinado que las ondas gravitacionales detectadas en septiembre nacieron en la última fracción de segundo antes de la fusión de dos agujeros negros, objetos celestes aún misteriosos que resultan del colapso gravitacional de enormes estrellas.

La posibilidad de una colisión entre estos cuerpos fue predicha por Einstein, pero el fenómeno jamás había sido observado.

De acuerdo con la teoría general de la relatividad, un par de agujeros negros en que cada uno orbita en torno al otro pierde energía, produciendo las ondas gravitacionales. Son estas ondas las que fueron detectadas el 14 de septiembre del año pasado, exactamente a las 16:51 horas.

El análisis de los datos permitió determinar que esos dos agujeros negros se fusionaron hace unos mil 300 millones de años. Cada uno era entre 29 y 36 veces más grandes que el Sol.

La comparación de los momentos de llegada de las ondas gravitacionales a los dos detectores Ligo (7.1 milisegundos de diferencia) distantes 3 mil kilómetros uno del otro, y el estudio de las características de las señales medidas, confirmaron la detección.

Los científicos apuntan que la fuente de las ondas estuvo probablemente en el hemisferio sur del cielo, pero un mayor número de detectores habría permitido establecer una localización más precisa.

Las ondas gravitacionales pueden ser aún más revolucionarias de lo que ha sido el telescopio, porque son diferentes de las fuentes luminosas, consideró el astrofísico David Shoemaker, responsable por Ligo en el Instituto de Tecnología de Massachussetts (MIT, por sus siglas en inglés). Este descubrimiento genera entusiasmo para la física y es muy prometedor para la astrofísica y la astronomía.

Así, será posible obtener señales provenientes de diferentes cuerpos de enorme masa como los agujeros negros y las estrellas de neutrones, dijo.

Las primeras aplicaciones que vemos ahora son para los agujeros negros, porque no emiten luz y no los podríamos ver sin las ondas gravitacionales, destacó, para añadir que por el momento se ignora cómo crecen estos objetos, que se hallan en el centro de casi todas las galaxias.

Explorar el universo

Por ello, las ondas gravitacionales pueden ayudar a explicar la formación de las galaxias, dijo Shoemaker.

La humanidad posee ahora otra herramienta para explorar el universo, añadió Tuck Stebbins, jefe del laboratorio de astrofísica gravitacional del centro Goddard, de la Nasa.

La gravedad es la fuerza que controla el universo y poder ver sus radiaciones nos permite observar los fenómenos más violentos y fundamentales del cosmos, que de otra forma son imposibles de observar, dijo Stebbins.

Poder detectar estas ondas que viajan sin perturbación por millones de años torna posible remontarse al primer milisegundo del llamado Big Bang.

Una prueba indirecta de la existencia de las ondas gravitacionales había sido producida por el descubrimiento, en 1974, de un púlsar y de una estrella de neutrones que rotaban una en torno de la otra a alta velocidad. Russell Hulse y Joseph Taylor ganaron el Nobel de Física de 1993 por este hallazgo.

Uno de los dos detectores de ondas gravitacionales del proyecto Ligo se encuentra en Livingston, en el sureño estado de Luisiana, y el otro está en Hanford, en Washington. Ambos son equipados con interferómetros, que miden interferencias y permiten capturas extraordinariamente precisas de diversos tipos de ondas.

Este equipo trabaja con el grupo franco-italiano Virgo, situado cerca de Pisa, en Italia, que deberá estar plenamente operativo hacia finales de año. Tanto Ligo como Virgo se han equipado recientemente con instrumentos de medición más modernos y precisos. El descubrimiento está publicado en la revista estadunidense Physical Review Letters.